
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2312
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Web Secure Software Lifecycle Model
D. R. Ingle, Dr. B.B. Meshram

Abstract-The traditional approach of developing software does not consider security as a prime factor for the development of any software. It is
considered as one of the features of the developed system. Since in the recent years number of cyber crimes have increased, there is a need to
redesign the software development process and introduce security at each and every phase of software development lifecycle. To induce security at
every phase we need to identify the vulnerabilities at each phase. Hence this paper summarizes the survey conducted on vulnerabilities at different
phases, the threats and tentative attacks due to the corresponding vulnerabilities. We have also conducted survey on patches available for these
threats and hence we have proposed a secure software development lifecycle. We have considered web as the application to identify the
vulnerabilities and we have also implemented the security patches on a case study.
Key words-Vulnerability, security, requirement phase, design phase, implementation phase, testing phase .maintenance phase

——————————  ——————————

1. INTRODUCTION

 Security is the prime concern of any project. Unfortunately in
the early days software projects were developed with
requirement as the primary concern[1]. The researchers
identified the reason of failure of excellently coded software
developed as per the basic requirement as the lack of security
measures at the early stages of development of software[2].
Traditionally software project is developed using the waterfall
lifecycle model which consists of the stages such as
requirement engineering, design, coding, integration and
deployment and maintenance. Implementing security at the
requirement engineering phase as well as at the other phases
also would always improve the integrity of the software [3].

• D.R. Ingle is currently pursuing PhD program in computer engineering in
Amravati University, India, PH-09702777927. E-mail:
dringleus@yahoo.com

• Dr. B.B. Meshram is currently working as professor and HOD of Computer
technology in University of Mumbai, India PH-01123456789. E-mail:
bbmeshram@vjti.org.in

Security is one of the properties of the software. It is not the
feature of any software[4]. Application security always differs
from the software security[5]. The user authentication, pin
verification, intrusion detection system, firewalls are the
application security which is implemented after the software is
developed and deployed[6]. The application security is
breached intentionally by an intruder violating the security
measures[7]. Software security is always breached due
vulnerabilities[8] in software development. Weakness or faults
in a system or protection mechanism that expose information to
attack or damage are known as vulnerabilities[9]. They can
range from flaw in software package, to an unprotected system
port, or an unlocked door. Vulnerabilities have been examined,
documented and published are referred to as well known
vulnerabilities[10]. As an instance the standard port for SMTP
is port no.8080[11]. If SMTP is designed to work on port 8080
all the mails transferred via. this mail server can be accessed
easily[12]. The need of software security is to identify the
vulnerabilities and develop the flawless software[13].

Different researches in the field of software security are based
on either analysis of security at the phases of software
development lifecycle or implementing security at particular
stage14]. This is overcome in SOSDLC where analysis of
security is done only after it is implemented at each phase.

The rest of the paper is organized as follows. Section 2 deals
with background work Section 3 deals with survey on
vulnerabilities at different phases of SDLC and hence
implementing security. Section 4 deals with implementation of
SOSDLC Section 5 gives the conclusion.

2. BACKGROUND WORK

Developing a secure application is an important job of a software
developer. In paper [15] three basic motivating points are
considered as need of implementing security. These points
emphasize on creating awareness about security, need for security
team and also need for different methods and tools for
implementing security. According to[16], software engineers
generally do not use security failure data, particularly attack data,
to improve the security and survivability of the systems that they
develop. Providing up-to-date information about security
problems to developers
And informing them about practices known to reduce security
problems are important steps toward securing software. [17]
Discuss about security teams investigate vulnerabilities and
different security issues and also identify methods and tools to be
deployed in software development process to improve security.
Thee points do not take care about implementing security at each
phase which is considered in SOSDLC.

To develop the framework of our proposed method we identified
the following points to be considered.

2.1 Secure Software Development Team
This team identifies the common mistakes done by the developers
and hence identify the flaw in the application. The team can be
split into five groups to remove vulnerabilities at five different
phases and hence implement different secure tools and methods .
They also should work on analysis of security at different phases.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2313
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2.2 Identifying Secure Tools and Methods
The identification of vulnerabilities at different phases will help
in identifying secure tools and methods. There are different ways
of identifying vulnerabilities but this should be related to the
application which is being developed. Rather than using normal
UML diagrams to understand the design of system, different tools
like UMLsec, ASMLses or STATLetc should be used

2.3 Testing integration of secure phases
Many researches are going on in the field of security in SDLC.
Most of them recommend implementing security at particular
phase. Though security was implemented at any stage different
test cases can only give idea about the correctness of the security.
The security implemented at particular phase might be correct but
after integrating different phases the overall purpose of software
development should not be changed and also the overall security
of the application should not be violated

3. Survey on Vulnerabilities At Different
Phases Of SDLC And Hence Implementing
Security

Vulnerabilities and their patches
3.1Requirement Phase: We have identified the
vulnerabilities at requirement phase based on [18].
3.1.1 Vulnerabilities
1. Non identification and non verification of users and client
applications.
2. Unmanaged authorization of access to data and services for
users and client applications.
3. No availability of mechanisms for detecting intrusions by
unauthorized persons and client applications.
4. No mechanisms to ensure that unauthorized malicious
programs (e.g., viruses) do not infect the application or
component.
5. Non availability of mechanism to avoid intentional corruption
of communications and data .
6. Non availability of mechanism for repudiation of interactions
of parties with the application or component later.
7. Non availability of mechanism to ensure that confidential
communications and maintain privacy of data.
8. Non availability of security personnel to audit the status and
usage of the security mechanisms.
9. Non availability of recovery methods
10. Non availability of physical security of centres and their
components and personnel protection against destruction,
damage, theft, or surreptitious replacement (e.g., due to
vandalism, sabotage, or terrorism).
11. Non availability of mechanism to avoid unintentionally
disrupts of the security mechanisms of application, component, or
centre due to maintenance.

3.1.2 Patches
The above mentioned vulnerabilities can be classified as the
following points mentioned in [10]. Considering these points at
the requirement phase of software development will help in
developing secure software.

• Identification Requirements An identification requirement is
any security requirement that specifies the extent to which a
business, application, component, or centre shall identify its
externals (e.g., human actors and external applications) before
interacting with them.
• Authentication Requirements
An authentication requirement is any security requirement that
specifies the extent to which a business, application, component,
or center shall verify the identity of its externals (e.g., human
actors and external applications) before interacting with them.
• Authorization Requirements
An authorization requirement is any security requirement that
specifies the access and usage privileges of authenticated users
and client applications.
• Immunity Requirements An immunity requirement is any
security requirement that specifies the extent to which an
application or component shall protect itself from infection by
unauthorized undesirable programs (e.g., computer viruses,
worms, and Trojan horses).
• Integrity Requirements An integrity requirement is any
security requirement that specifies the extent to which an
application or component shall ensure that its data and
communications are not intentionally corrupted via unauthorized
creation, modification, or deletion.
• Intrusion Detection Requirements An intrusion detection
requirement is any security requirement that specifies the extent
to which an application or component shall detect and record
attempted access or modification by unauthorized individuals.
•Nonrepudiation Requirements A nonrepudiation requirement
is any security requirement that specifies the extent to which a
business, application, or component shall prevent a party to one of
its interactions (e.g., message, transaction) from denying having
participated in all or part of
the interaction.
• Privacy Requirements A privacy requirement is any security
requirement that specifies the extent to which a business,
application, component, or centre shall keep its sensitive data and
communications private from unauthorized individuals and
programs.
• Security Auditing Requirements A security auditing
requirement is any security requirement that specifies the extent
to which a business, application, component, or centre shall
enable security personnel to audit the status and use of its security
mechanisms.
• Survivability Requirements A survivability requirement is any
security requirement that specifies the extent to which an
application or centre shall survive the intentional loss or
destruction of a component.
• Physical Protection Requirements A physical protection
requirement is any security requirement that specifies the extent
to which an application or centre shall protect itself from physical
assault.
• System Maintenance Security Requirements A system
maintenance security requirement is any security requirement that
specifies the extent to which an application, component, or centre
shall prevent authorized modifications (e.g., defect fixes,
enhancements, updates) from accidentally defeating its security
mechanisms.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2314
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3.1.3 Tools: Different UML diagrams can be used to model the
security at the requirement phase. A framework for representing
security requirements has been designed by Charles B. Haley,
Robin Laney etal using different UML tools such as class diagram
and activity diagrams. Hence using different UML diagrams we
can model the security at requirement phase.
Case Study: We have implemented these patches on a case
study on online paper conference system. The Requirement
analysis of this case study focuses on the different categories of
users, hereafter roles, which can interact with the application.
The main roles involved in this application are:

• Authors submit papers and browse all relevant
information on their papers.

• PC members submit reviews, browse all papers, and
discuss paper acceptance.

• Conference chair assigns papers to PC members and
defines the program.

The use case diagram, misuse case and attack tree
Have been implemented in the below figures.

Use Case Diagram:

Figure 5 Use Case diagram of Online Paper Conference

Figure 6 MisUse Case diagram of Online Paper Conference

Figure 7 Attcak Tree1

Figure 8 Attcak Tree2

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2315
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

To implement security at this phase avoiding the above
vulnerabilities we have considered four levels of security at this
phase with the help of [19].
1. User level security 2.Application level security 3.Funtional
level security 4.Security for business continuity. These levels are
implemented using block diagram as shown in figure 1,2,3,4.

1. User level security: The user level security considers the
security at the user levels. Hence as shown in the below diagram
under identification requirement the personal details and
professional details of the user are verified. The authorization
requirement identifies whether the user is authorized edit, add and
delete. Based on the result obtained from identification
requirement and authorization requirement authentication
requirement identifies whether the user has author authentication
PC chair authentication or PC Member authentication.

Figure 9 User Level Security at Requirement Phase

2. Application Level Security: Application level security
identifies the security of the web application. As shown in the
diagram below the immunity requirement identifies the viruses,
Trojans, worms which may attack the web application, the
intrusion detection requirement identifies the failed
authentication, failed identification and failed authorization and
the integrity requirement identifies unauthorized creation
unauthorized modification and unauthorized deletion.

Figure 10 Application Level Security at Requirement Phase

3 Functional Level Security: To implement the security at
functional level three major factors are considered as shown in the
diagram below. They are No repudiation requirement which
considers the date and time of received paper, date and time of
sent acknowledgement and identity of the author. The Privacy
requirement which considers the anonymity i.e. the application
shall not store any personal information about the authors; the
data storage privacy i.e. the application shall not allow
unauthorized individuals or programs access
to any stored data; the communications privacy i.e. the
application shall not allow unauthorized individuals or programs
access to any communications. The Security Auditing
Requirement gives the summary of status of immunity, status of
integrity and status of intrusion detection.

Figure 11 Functional Level Security at Requirement Phase

4 Security For Buisness Continuity: The security at this level
considers three basic factors survivability requirement, physical
protection requirement and system maitenance security
requirement. Survivability highlights the chances of component
failure and database server failure, physical protection
requirement identifies the security of the harware and the
personnel and system maitenance security requirement identifies
the precautions to be taken while upgrading hardware or software
and while replacing hardware or software.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2316
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure 12 Security For Buisness Continuity at Requirement
Phase

3.2Design phase: Software design represents the static
structure and dynamic behaviour of software. It is necessary to
make design decisions that are secure and do not introduce any
security vulnerabilities in the completed software. Designing for
security in software is futile unless it is planned to act on the
design and incorporate necessary secure controls during the
development stage of software development lifecycle.
3.2.1 Vulnerabilities at design phase:
We have identified the vulnerabilities at design phase by
classifying the design phase as: data structure design, algorithm
design, graphical interface user design, security design, hypertext
design, authoring system design and access design. Vulnerability
at each of the classification is explained below:
a. Data Structure Design: The data structure design can be
vulnerable if there is no secure storing of sensitive data,
especially those with high levels of confidentiality and integrity.
The structure should follow the following flow chart as
mentioned in [20]. The weightage given to the data should be
maintained other the probability of vulnerabilities in data
structure design increases.

Figure 13 Algorithm Design

b. Algorithm Design: Algorithm design deals with choosing a
proper programming language in regards to program type,
requirements and expected functionality. It is an important design
time decision that can mitigate much possible vulnerability. For
instance use of improper locking mechanism on shared resources
may lead to vulnerability. Non usage of library calls instead
relying on external/ system calls may also lead to vulnerable
code.
 “when analyzing the running time of algorithms, a common
technique is to differentiate best-case, common-case, and worst-
cast performance. For example, an unbalanced binary tree will be
expected to consume O(nlogn) time to insert n elements, but if the

elements happen to be sorted beforehand, then the tree would
degenerate to a linked list, and it would take O(n2) time to insert
all n elements. Similarly, a hash table would be expected to
consume O(n) time to insert n elements. However, if each element
hashes to the same bucket, the hash table will also degenerate to a
linked list, and it will take O(n2) time to insert n elements. While
balanced tree algorithms, such as red-black trees , AVL trees , and
treaps can avoid predictable input which causes worst-case
behavior, and universal hash functions can be used to make hash
functions that are not predictable by an attacker, many common
applications use simpler algorithms. If an attacker can control and
predict the inputs being used by these algorithms, then the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2317
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

attacker may be able to induce the worst-case execution time,
effectively causing a denial-of-service (DoS) attack.”
c. Graphical User Interface: The user interacts with the web
application using graphical user interface (GUI). There is much
vulnerability in GUI design which may lead to different attacks.
As discussed in [21] the design flaws in browser as related to GUI
are as follows:
d.HTTP Authentication Dialog Spoofing
If a resource is protected, the server sends a particular HTTP
response to the browser based on which the browser initiates a
dialog authentication process. It is one of the main characteristics
of
browsers to handle HTTP authentication. Every single HTTP
authentication process has a realm value associated with it. In
general, the realm value is a string that shows the domain name

on which resource is protected. The real value also provides a
user supplied string for identity purposes. A user can check the
domain name and provide his credentials to gain access to the
server. However, recent vulnerabilities have shown the fact that it
is possible to manipulate the authentication dialog box.
 A dialog box may look real and authentic but it can be spoofed.
This type of flaw in browsers results in the stealing of user
credentials without users being aware of the reality. For example:
Internet Explorer and Google Chrome inherit this design flaw. A
serious design flaw in Google [20] is that an authentication dialog
can be completely spoofed and users are not able to distinguish
the difference. A spoofed authentication dialog box is presented
as in Figure 13.

 Figure 13: Spoofed authentication dialog box in Google Chrome

The spoofed authentication dialog box bedazzles the user.
However, it has been noticed that a number of users fall into this
trap and provide their authentication credentials as per the realm
value shown in the dialog box. This design flaw persists because
browsers are not able to handle the realm value passed as a pa-
rameter to the authenticated HTTP response header and render it
directly in the dialog box. Most browsers do not handle the realm
value in an appropriate manner, allowing spoofing attacks.
e. URL Obfuscation Flaws URL obfuscation is a trick that plays
around the designing of URLs with certain meta characters in
order to confuse browsers as well as users so that they can be
redirected to malicious domain. This is a browser design flaw
because browsers are not able to render the URLs appropriately
thereby resulting in unauthorized redirection. As a result, the
browser can be redirected to a malicious domain that is ready to
serve malware.
In general, good practice requires that browsers should raise a
warning about the obfuscation in a URL and should be smart
enough to present a user with an appropriate choice. Primarily,
the user thinks that a destination website is Google.com, but in

reality, the user is redirected towards yahoo.com. An obfuscated
URL is shown in Figure 2.

Figure 14: URL Obfuscation in Google Chrome
Manipulating Browser Status Bars Browser status bars are used
to present the active state of links when a user clicks a hyperlink
on a webpage. In general, status bars represent the status of
hyperlinks. The mindset behind the design of the status bar is that
a user can see the authenticity of domain names and hyperlink.
Basically, a user believes that the status bar displays the domain
name in the form of a URL and the browser redirects to that page
upon clicking. Attackers have exploited this design flaw by
spoofing the status bar with JavaScript calls such as window
.location or window. href to fool users.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2318
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure shows code that is used to spoof the status bar in Internet Explorer.

Figure 15: Custom HTML Code to Spoof Internet Explorer’s
Status Bar

f. Cross Site Scripting Attack Notification Bars – Bypassing
Filters
With the advent of new browser security protection mechanisms,
reflective Cross Site Scripting (XSS) filters have become a part of
the browser architecture. The XSS filters in browsers are not well
developed and can be bypassed easily to execute successful XSS
attacks. For example, Internet Explorer released a built-in XSS
filter with Internet Explorer 8, but it can be bypassed easily and
no notification alert is raised. However, Internet Explorer’s XSS
filter raised a notification warning but was not able to sanitize the
XSS attacks appropriately. This type of behaviour shows the
inherent weakness in client-side XSS filters. Moreover, NoScript
is considered a very good extension of Mozilla that prevents
reflective XSS attacks.

Figure 16: Successful bypass even after XSS notification
g. Download Dialog Box Spoofing Browsers use a download
dialog box in order to download a file from a server. This process
acts as a notification to the user about the characteristics of the
file. The download dialog box is displayed when a user clicks a
hyperlink to download a specific file. It is a type of GUI
displayed to the user for raising an alert. Attackers are spoofing

download dialog boxes to trick users into downloading malicious
files instead of authorized files. This attack is triggered on a wide
scale to infect user machines with malware. This attack is
implemented in order to force a user to interact with the rogue
pop-up window. In other words, it is a design bug in Internet
Explorer that fails to differentiate between the download dialog
box and a rogue pop-up window. Figure 16 shows the spoofed
download dialog box in Internet Explorer 8.
In the Figure 6 screenshot, a fake End User License Agreement
(EULA) pop up window overlaps the authorized download dialog
box. This fake EULA window is embedded with malicious links
and it locks the download dialog box completely. This attack
forces the user to interact with a EULA window prior to
downloading the file. In general, users are not aware of these
design problems and spoofing tricks which help an attacker to
launch attacks successfully. The figure clearly shows one of the
serious design bugs in graphical user components in browsers.
h. Clickjacking Browser Interface The aim of this attack is to
steal sensitive data and extract information about a user’s
activities in a stealthy manner. Primarily, this attack uses two
major UI components in a browser–frames and buttons. The term
click jacking itself points to hijacking mouse clicks in a browser
window. In general terms, an attacker designs a transparent UI
component such as a button and makes it hidden. When a
legitimate user performs a mouse click in a browser window, the
hidden button is clicked and it executes the backend command
designed by the attacker to perform rogue functions. This attack is
considered one of the most sophisticated attacks.

i. Security Design: Depending on the application being designed,
the types of issues that must be addressed vary. For example,
when you design a secure Web application, it is important that
you follow guidelines to ensure effective user authentication and
authorization, to protect sensitive data as it is transmitted over
public networks, and to prevent attacks such as session hijacking.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2319
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Some of the important Web application issues that must be addressed with secure design practices are shown in Figure 17.

Figure 17 Secure Design practices

j. Hypertext Design: As mentioned in part of Hyper Text
Transfer Protocol in the HTTP 1.1 has following vulnerabilities:

1.1 Personal Information HTTP clients are often privy to large
amounts of personal information (e.g. the user's name, location,
mail address, passwords, encryption keys, etc.), and SHOULD be
very careful to prevent unintentional leakage of this information
via the HTTP protocol to other sources.

1.1.1 Abuse of Server Log Information

A server is in the position to save personal data about a user's
requests which might identify their reading patterns or subjects of
interest. This information is clearly confidential in nature and its
handling can be constrained by law in certain countries. People
using the HTTP protocol to provide data are responsible for
ensuring that such material is not distributed without the
permission of any individuals that are identifiable by the
published results.

1.1.2 Transfer of Sensitive Information

Like any generic data transfer protocol, HTTP cannot regulate the
content of the data that is transferred, nor is there any a priori
method of determining the sensitivity of any particular piece of
information within the context of any given request. Therefore,
applications SHOULD supply as much control over this
information as possible to the provider of that information. Four
header fields are worth special mention in this context: Server,
Via, Referer and From.

1.1.3 Encoding Sensitive Information in URI's

Because the source of a link might be private information or
might reveal an otherwise private information source, it is
strongly recommended that the user be able to select whether or
not the Referer field is sent. For example, a browser client could
have a toggle switch for browsing openly/anonymously, which
would respectively enable/disable the sending of Referer and
From information.

Authors of services which use the HTTP protocol SHOULD NOT
use GET based forms for the submission of sensitive data,
because this will cause this data to be encoded in the Request-
URI. Many existing servers, proxies, and user agents will log the
request URI in some place where it might be visible to third
parties. Servers can use POST-based form submission instead.

1.1.4 Privacy Issues Connected to Accept Headers

Accept request-headers can reveal information about the user to
all servers which are accessed. The Accept-Language header in
particular can reveal information the user would consider to be of
a private nature, because the understanding of particular
languages is often strongly correlated to the membership of a
particular ethnic group. User agents who offer the option to
configure the contents of an Accept-Language header to be sent in
every request are strongly encouraged to let the configuration
process include a message which makes the user aware of the loss
of privacy involved.

1.2 Attacks Based On File and Path Names

Implementations of HTTP origin servers SHOULD be careful to
restrict the documents returned by HTTP requests to be only those
that were intended by the server administrators. If an HTTP
server translates HTTP URIs directly into file system calls, the

IJSER

http://www.ijser.org/
http://www.guidanceshare.com/wiki/Image:WebAppDesignIssues.gif

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2320
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

server MUST take special care not to serve files that were not
intended to be delivered to HTTP clients. For example, UNIX,
Microsoft Windows, and other operating systems use ".." as a
path component to indicate a directory level above the current
one. On such a system, an HTTP server MUST disallow any such
construct in the Request-URI if it would otherwise allow access to
a resource outside those intended to be accessible via the HTTP
server. Similarly, files intended for reference only internally to
the server (such as access control files, configuration files, and
script code) MUST be protected from inappropriate retrieval,
since they might contain sensitive information. Experience has
shown that minor bugs in such HTTP server implementations
have turned into security risks.

1.3 DNS Spoofing

Clients using HTTP rely heavily on the Domain Name Service,
and are thus generally prone to security attacks based on the
deliberate mis-association of IP addresses and DNS names.
Clients need to be cautious in assuming the continuing validity of
an IP number/DNS name association.

1.4 Location Headers and Spoofing

If a single server supports multiple organizations that do not trust
one another, then it MUST check the values of Location and
Content- Location headers in responses that are generated under
control of said organizations to make sure that they do not attempt
to invalidate resources over which they have no authority.

1.5 Content-Disposition Issues

RFC 1806 from which the often implemented Content-
Disposition header in HTTP is derived, has a number of very
serious security considerations. Content-Disposition is not part of
the HTTP standard, but since it is widely implemented, we are
documenting its use and risks for implementers.

1.6 Authentication Credentials and Idle Clients

Existing HTTP clients and user agents typically retain
authentication information indefinitely. HTTP/1.1. Does not
provide a method for a server to direct clients to discard these
cached credentials. This is a significant defect that requires
further extensions to HTTP. Circumstances under which
credential caching can interfere with the application's security
model include but are not limited to:

 - Clients which have been idle for an extended period
following which the server might wish to cause the client to re
prompt the user for credentials.
 - Applications which include a session termination indication
(such as a `logout' or `commit' button on a page) after which the
server side of the application `knows' that there is no further
reason for the client to retain the credentials.

1.7 Proxies and Caching

By their very nature, HTTP proxies are men-in-the-middle, and
represent an opportunity for man-in-the-middle attacks.
Compromise of the systems on which the proxies run can result in
serious security and privacy problems. Proxies have access to
security-related information, personal information about
individual users and organizations, and proprietary information
belonging to users and content providers. A compromised proxy,
or a proxy implemented or configured without regard to security
and privacy considerations, might be used in the commission of a
wide range of potential attacks.

1.7.1 Denial of Service Attacks on Proxies

They exist. They are hard to defend against. Research continues.
Beware.

Authorization System Design: Authorization determines what
the authenticated identity can do and the resources that can be
accessed. Improper or weak authorization leads to information
disclosure and data tampering. Defence in depth is the key
security principle to apply to your application's authorization
strategy.
The following practices improve your Web application's
authorization:

• Use multiple gatekeepers.
• Restrict user access to system-level resources.
• Consider authorization granularity.

Use Multiple Gatekeepers
On the server side, you can use IP Security Protocol (IPSec)
policies to provide host restrictions to restrict server-to-server
communication. For example, an IPSec policy might restrict any
host apart from a nominated Web server from connecting to a
database server. IIS provides Web permissions and Internet
Protocol/ Domain Name System (IP/DNS) restrictions. IIS Web
permissions apply to all resources requested over HTTP
regardless of the user. They do not provide protection if an
attacker manages to log on to the server. For this, NTFS
permissions allow you to specify per user access control lists.
Finally, ASP.NET provides URL authorization and File
authorization together with principal permission demands. By
combining these gatekeepers you can develop an effective
authorization strategy.
Restrict User Access to System Level Resources
System level resources include files, folders, registry keys, Active
Directory objects, database objects, event logs, and so on. Use
Windows Access Control Lists (ACLs) to restrict which users can
access what resources and the types of operations that they can
perform. Pay particular attention to anonymous Internet user
accounts; lock these down with ACLs on resources that explicitly
deny access to anonymous users.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2321
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

For more information about locking down anonymous Internet
user accounts with Windows ACLs, see Chapter 16, "Securing
Your Web Server."
Consider Authorization Granularity
There are three common authorization models, each with varying
degrees of granularity and scalability.
The most granular approach relies on impersonation. Resource
access occurs using the security context of the caller. Windows
ACLs on the secured resources (typically files or tables, or both)
determine whether the caller is allowed to access the resource. If
your application provides access primarily to user specific
resources, this approach may be valid. It has the added advantage
that operating system level auditing can be performed across the
tiers of your application, because the original caller's security
context flows at the operating system level and is used for
resource access. However, the approach suffers from poor
application scalability because effective connection pooling for
database access is not possible. As a result, this approach is most
frequently found in limited scale intranet-based applications. The
impersonation model is shown in Figure 4.5.

Figure 18
Impersonation model providing per end user authorization
granularity
The least granular but most scalable approach uses the
application's process identity for resource access. This approach
supports database connection pooling but it means that the
permissions granted to the application's identity in the database
are common, irrespective of the identity of the original caller. The
primary authorization is performed in the application's logical
middle tier using roles, which group together users who share the
same privileges in the application. Access to classes and methods
is restricted based on the role membership of the caller. To
support the retrieval of per user data, a common approach is to
include an identity column in the database tables and use query
parameters to restrict the retrieved data. For example, you may
pass the original caller's identity to the database at the application
(not operating system) level through stored procedure parameters,
and write queries similar to the following:
SELECT field1, field2, field3 FROM Table1 WHERE {some
search criteria} AND UserName = @originalCallerUserName
This model is referred to as the trusted subsystem or sometimes as
the trusted server model. It is shown in Figure 4.6.

Figure 19
Trusted subsystem model that supports database connection
pooling
The third option is to use a limited set of identities for resource
access based on the role membership of the caller. This is really a
hybrid of the two models described earlier. Callers are mapped to
roles in the application's logical middle tier, and access to classes
and methods is restricted based on role membership. Downstream
resource access is performed using a restricted set of identities
determined by the current caller's role membership. The
advantage of this approach is that permissions can be assigned to
separate logins in the database, and connection pooling is still
effective with multiple pools of connections. The downside is that
creating multiple thread access tokens used to establish different
security contexts for downstream resource access using Windows
authentication is a privileged operation that requires privileged
process accounts. This is counter to the principle of least
privilege. The hybrid model using multiple trusted service
identities for downstream resource access is shown in Figure 4.7.

Figure 20

Hybrid model
g. Access Design: With the help of [11] we identify that to
identify vulnerability of access design we need to consider what
access to the system the attacker must possess in order to exploit
the software feature.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2322
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2323
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Table 1. security design Principles

3.2.2 Patches: Security design principles are a specific type of
guidelines and practices. They are proven rules for improving the
security posture of an application, and in order to be useful, the
principles must be applied to specific problems.
The security design principles in Table 1 are built
upon the idea of simplicity and restriction.
Based on the authors [20] SINTEF have identified the security
design reviews and etal 2006 has defined threat modelling using
STRIDE, an acronym for Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, and Elevation of
Privilege. which is listed in the table below The table shows a
simplified version of a checklist focused on Web application
security.

Element Threat Patch
Input validation

Spoofing,
Denial of
Service,
Tampering,
Information
Disclosure

All entry points
and trust
boundaries are
identified by the
design.
Input validation is
applied whenever
input is received
from outside the
current trust
boundary.
The design
addresses potential
SQL injection
issues.

 The design
addresses potential
cross-site scripting
issues.
The design does
not rely on client-
side validation.

Authentication

Spoofing The design
partitions the Web
site into public and
restricted areas.
Account
management
policies are taken
into consideration
by the design.

The design ensures
that minimum
error information
is returned in the
event of
authentication
failure.

 The design adopts
a policy of using
least-privileged
accounts.
The identity that is
used to
authenticate with
the database is
identified by the
design.

Authorization

Elevation of
Privilege

The role design
offers sufficient
separation of
privileges (the
design considers
authorization
granularity).
The design
identifies code
access security
requirements.
Privileged
resources and
privileged
operations are
identified.
All identities that
are used by the
application are
identified and the
resources accessed
by each identity
are known.

Sensitive data

Denial of
Service,
Tampering,
Information
Disclosure,
Repudiation

The design
identifies the
methodology to
store secrets
securely.
The design
identifies
protection
mechanisms for
sensitive data that
is sent over the
network.
Secrets are not
stored unless
necessary.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2324
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Cryptography

Denial of
Service,
Tampering,
Information
Disclosure,
Repudiation,
Spoofing

The methodology
to secure the
encryption keys is
identified.
Platform-level
cryptography is
used and it has no
custom
implementations.
The design
identifies the key
recycle policy for
the application.

Exceptions

Repudiation The design
outlines a
standardized
approach to
structured
exception handling
across the
application.
The design
identifies generic
error messages that
are returned to the
client.

Auditing and
logging

Tampering,
Repudiation,

The design
identifies the level
of auditing and
logging necessary
for the application
and identifies the
key parameters to
be logged and
audited.
The design
identifies the
storage, security,
and analysis of the
application log
files.

Table 2. Checklist for security review

3.3Implementation phase:

3.3.1 Vulnerabilities at implementation phase: The
vulnerabilities of implementation phase are listed [8]:
1. Environment variables: Variables that encapsulate information
that does not change across executions of a program. On UNIX
systems, the PATH environment variable lists the directories to be
searched for a named executable. Regardless of how many
different executables are searched for, the PATH variable's value
does not change.

2. Buffer Overflows: Overflowing a memory stack so that the
program will execute the data after the last address in the stack,
usually an executable program that establishes a root or command
line shell giving the attacker full control of the system. Others are
heap overflows that contain code that the program can branch to
via function pointers, and data overflows to alter variable values
in conjunction with executing code contained in environment
variables.
3. Data as Instructions or Script Injections: Using scripting
languages to include information with executable code which the
system executes due to
Improper input checking.
4. Numeric Overflows: Giving a larger or smaller value than
expected. This assumes that a particular value stays within
established bounds. The concept is to look for numbers that can
be more than 2^32 or greater, or the maximum integer.
5. Race Conditions: Sending a string of data before another is
executed. The most common type is the “Time of Check to Time
of Use” flaw. Another is masquerading or “Man-In-The-Middle”
attacks.
6. Network Exposures: Assuming that clients will check messages
sent to a server adequately. Remote commands and executables
provide the majority of examples of this type of exploit ("r"
protocols like rsh, rlogin, and especially rexd).
7. Information Exposure: Exposing sensitive information to
unauthorized users that can be used to compromise data or
systems. For example: 1) non-secure transmission of sensitive
information such as human resource data that can be used for
social engineering; 2) Use of clear text user ID’s and passwords;
and 3) weak encryption schemes for access.
8. Operational Misuse: Operating a system in a non-secure mode.
Using standard accounts with blank passwords, or providing open
shares giving everyone access. Anonymous file transfer is
common where users are given read/write access to a set of
directories or files.
9. Default Settings: Default software settings may present a risk if
they require user intervention to secure them. For example, Root
or Administrator accounts that do not require an initial strong
password also present risks if they are not set when installed such
as Windows NT and 2000. Also, applications using open ports
that neither the system nor application check for authentication,
present potential risks. Known examples are: SunOS's use of "+"
in the default /etc/hosts.equiv file; or leaving the uudecode alias
in the mail alias file.
10. Programmer Backdoors: Unauthorized access paths left by
developers of the software for easy access. If web services are
included, this list greatly changes and expands as shown by
Jaquith. The evaluation of security flaws in 45 commercial
applications, found security design flaws in 70 percent of the
defects observed, with nearly half of these classified as serious.
3.3.2 Patches
To perform a secure implementation different languages have
their own constraints. The coding of the above case study is being
implemented in PhP 5.3.6. We have worked on how to eliminate
little vulnerability in C/C++ which are in common with PhP 5.3.6.
The following steps should be followed [12]: Of strings:
Weaknesses in string representation, string management, and
string manipulation have caused a broad range of software

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2325
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

vulnerabilities and exploits. Unbounded string copies, null-
termination errors, and string truncation errors have led to
numerous vulnerabilities in C and C++ programs, including the
ubiquitous buffer overflow. However, help is either here or on the
way. C++ programmers can use the standard std::string class
defined in ISO/IEC standard 14882.1 The std::string class is the
char instantiation of the std::basic_string template class, and it
uses a dynamic approach to strings in that memory is allocated as
required—meaning that in all cases, size() <= capacity().
Of integers:An inherent problem in computing is that digital
representations of integers are always limited in the range of
values they can represent. As a result, operations on these integers
can result in integer overflow, truncation, and sign errors.
Attackers often exploit integers used as array indices, loop
counters, or lengths to create buffer overflows and execute
arbitrary code. One solution for C++ users is to use the SafeInt
template class, written by David LeBlanc.6 Before performing
operations, most SafeInt functions evaluate operands to determine
whether an error will occur. Because the class is declared as a
template, you can use it with any integer type. It overrides nearly
every relevant operator (except for the subscript operator) so that
arithmetic
Operators can be used in normal inline expressions.
Methods, tools, and processes: Safe integer operations aren’t
necessarily the only solution to integer-overflow and other integer
exception errors, but they do provide a safety net that is largely
missing in C. Input validation and integer range checking are
important mitigations against vulnerabilities in both C and C++.
Safer, secure string libraries are available in both languages,
although errors leading to vulnerabilities are still possible. As a
result, software developers should still follow a policy of defence
in depth and not rely on a single strategy.

3.4 Testing Phase:
3.4.1 Vulnerability: Vulnerability at testing phase is no test cases
are developed to verify security of a system.

3.4.2 Patches: To avoid this vulnerability the developer should
perform the following activities:

• Stress Testing (Abnormal activity, abnormal input)
should be performed to validate design assumption.

• Test cases should be based on attack patterns.
• Software is able to limit the damage and rapidly

recovers from attacks if succeeded.
• White box (Static/dynamic code analysis, fault, injection

or propagation analysis) should be performed
• Verification of security standard should be confirmed.
• Test cases should comprise security concerns.

Importance of Stress Testing
Stress testing is considered to be important because of following
reasons:
1. Almost 92% of the software/systems are developed with an
assumption that they will be operating under normal scenario.
And even if it is considered that the limit of normal operating
conditions will be crossed, it is not considerably as high as it
really could be.

2. The cost or effect of a very important considerable software,
system and website failure under extreme conditions in real time
can be huge (or may be catastrophic for the organization or entity
owning the software/system).
3. It is always better to be prepared for extreme
Conditions rather than letting the system/software/
Web services crash, when the limit of normal, proper operation is
crossed.
4. Testing carried out by the developer of the system
/software/website may not be sufficient to help reveal conditions
which will lead to crash of the system/software when it is actually
submitted to
the operating environment.
5. It’s not always possible to reveal possible problems or bugs in
a system/software, unless it is subjected to such type of testing.

 We have generated test cases for checking security at each phase
and also the test cases for checking security after the integration
of each phase. Very few researches have been done in this field.
But we believe this phase should not be neglected when security
of an application is concerned.

Since the above case study is being developed in PhP 5.3.6 where
the cross site scripting can be avoided by Input Validation, we
have developed test cases for the same.

Table 3: Test case for input validation

Test Case 1
Test Objective: To check Input Validation of authors
Preconditions: As defined in the requirement phase
each author is given a unique Id. The communication
of the authors with PC member is not visible to
others.
Test Steps

Step 1: Enter the
qualification of the
author as “high school”

Step 2: Enter the
employment status of the
author as “unemployed”

Step 3: More than three
attempts to enter the
username and password

Step 4: View review of
other authors

Expected Result

“Qualification should be
“graduate”

“Author should be
employed in an
organisation or a student
of an institute”

“Your login attempt is
expired”

“Enter login password to
view review”

Test Result: Pass/Fail

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2326
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Table 4: Test case for input validation

Test Case 2
Test Objective: To check Input Validation of PC members
Preconditions: As defined in the requirement phase PC member
and PC chair are given separate login ID. The author cannot
change review status. The content of the paper is accessible only
to PC member and PC chair
Test Steps
Step 1: Enter the guessed user
name and password
Step 2: Enter the login id of
administrator and change the
review status.
Step 3: Login using author id
and view the content of
different author.

Expected Result
“User name and password does
not match”

“Permission denied”

“Access denied”

Test Result: Pass/Fail

3.4.3 Tools: At testing phase the different test cases should be
developed to observe security at this phase. These test cases can
be used as tools to represent security at this level.

3.5. Maintenance Phase:

3.5.1 Vulnerability: Security at this phase comes into account
only after the application is deployed. Hence the vulnerability at
phase plays an important role when corrective and preventive
maintenance is considered. Some malicious code threats during
the software’s operation include attacks intended to implant new
malicious code or to execute a vulnerability or malicious code
embedded in the targeted software. Examples of these attacks
include zero-day attacks; viruses (macro, polymorphic, stealth
viruses); worms; logic and time bombs; Trojan horses; network
attacks; exploitation of trapdoors and rootkits; cross-site scripting
attacks; SQL, XML, and other command injection attacks;
exploitation of buffer overflows; format-string attacks; insider
attacks; malicious mobile code attacks and reconnaissance attacks
such as connection or password sniffing. Malicious code
vulnerabilities are introduced during maintenance of the software,
just as when the software was constructed. Downloading
recommended security patches is considered to be a best practice;
however certain patches may have adverse effects. For example,
some patches may be compromised, or have inadequate testing
and validation. Patches may also conflict with environment
components as they are configured in the operational
environment. Obtaining patches or updates from multiple sources
may increase the vulnerability of the software; this is especially
true for systems that also contain OSS or legacy components.
Network stability and regression issues may occur, or patches
may interfere adversely with the previously existing software.

3.5.2 Patches: To have a secure maintenance phase the change
control should also be performed securely. Monitoring the
activities of the application is normally neglected which is
vulnerable. Different logins, log time, files, performance of the
application should be monitored regularly 2007. Because software
patches and updates are so important to the software,
implementation of a patch management process is one way to
strengthen the software’s security. There are various guidelines
available that can be tailored to an individual environment, but
generally they include some or all of the following:
• A policy or strategy should be tailored to the system’s unique
environment. 10 September 2007 Guidance for Addressing
Malicious Code Risk 45
• A team of qualified and trained individuals should be
responsible for overseeing and implementing the process.
• Appropriate testing should be done to ensure that the patch is
applied appropriately to the
intended environment. As different patches and updates are
released, it is important to maintain control over which ones are
implemented through a version control process.
• A process for removing patches and updates should also be
developed. In the event that a patch has an adverse effect,
procedures can facilitate the removal of such software.
• Vulnerabilities should be patched in a timely manner. Version
control and configuration control should be used in the event of
an issue with the patch or update.
• Patches should be deployed on the least sensitive or critical
software first, in the event that the software fails.10
• Continuous monitoring of the software should be done on a
regular basis. Patch maintenance should be an ongoing process,
with regular reports and logs.11
• Patches should be examined for the presence of malicious code
in a manner equivalent to the level at which the software being
patched was examined.

4. SOSDLC

From the survey conducted on indentifying, analysing and
implementing security at different phases of software
development lifecycle we understand that to develop secure
software each and every phase of development of the software
should be secure. Current systems either induce security after the
development of software or at particular phase of the software.
When security is concerned many researchers discuss about
access control or input validation. Few talk about vulnerable
coding and very few about implementing security at testing or
maintenance phase. After the software is deployed maintenance
plays an important role. If the change control is not handled
properly or monitoring is not done regularly the software
becomes vulnerable for the attackers. Hence we propose a
system which incurs security methods at all the phases of
software development lifecycle to develop secure software. We
have called this system as “Security Oriented Software
Development Lifecycle” (SOSDLC) which we have implemented
on requirement and design phase of a case study and have
surveyed different methods for implementing security in
implementation, testing, and maintenance phase .We have

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2327
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

designed the following f

ramework for SOSDLC

5. Conclusion and future Scope:

Software security has become a prime necessity now days with
the increased attackers and increased hackers. Many methods and
tools have been proposed by many researchers. Some tools

emphasize on security at requirement phase some at coding or
some at design, implementation and maintenance also. Some
researchers have worked upon overall development of secure
software. Few have worked on analysing the errors at each phase
while others have implemented the tools like UML state charts,
Secure UML and many such tools. There are few SSDLC’s which
are readily available among which MS SDL and CLASP are very
popular. Studies related to SSDLC indicate that standard methods
or tools cannot be implemented for different types of software
development. Hence in this paper using different research papers
we have tried to understand different methods to secure the basic
phases of secure software development that is requirement, design
and coding. Based on this study I have proposed that a secure
software development cycle should be based on implementing
security at each phase.

As the future scope of this method I would propose that this
method should be implemented for development of new software.
To check the correctness of the proposed method it should be
implemented on reengineered software and hence the result
should be compared with the security in actual software. The
security at each phase should be analyzed and quantized and
hence based the security index obtained the imparted security in a
software should be measured andbe mied to obtain the maximum
security index

modified to obtain the maximum security index.
References

[1] P. Moore, R. J. Ellison, and R. C. Linger. Attack modelling for

information security and survivability. In Dependable Systems and
Networks Conference, Gothenburg, Sweden, 2001.

[2] Aditya K. Sood 2011. “ Browser User Interface Design Flaws

Exploiting User Ignorance”, Michigan State University Richard J.
Enbody, Ph.D., Michigan State University, CrossTalk.

[3] Shawn Hernan and Scott Lambert and Tomasz Ostwald and Adam
Shostack. 2006 “Threat Modeling Uncover Security Design Flaws Using
The STRIDE Approach” MSDN Magazine, November 2006

[4] Charles B. Haley, Robin Laney, Jonathan D. Moffett,” Security

Requirements Engineering:A Framework for Representation and
Analysis” Member, IEEE, and

[5] Bashar Nuseibeh, Member, IEEE Computer Society

[6] Control Vulnerabilities in Web Applications Computer Systems

Laboratory CSAIL Stanford University MIT {mwdalton,
kozyraki}@stanford.edu nickolai@csail.mit.edu 2008

[7] Dave Hoover “Guidance For Addressing Malicious Code Risk” National

Security Agency 9800 Savage Road, Suite 6755fort Meade, Md 20755-
6755 Nsa-Guidance@Missi.Ncsc.Mil 10 September 2007

[8] David P. Gilliam, Thomas L. Wolfe, Josef S. Sherif Jet “Software

Security Checklist for the Software Life Cycle” Propulsion Laboratory,
California Institute of Technology david.p.gilliam@jpl.nasa.gov,
thomas.l.wolfe@jpl.nasa.gov, josef.s.sherif@jpl.nasa.gov Matt Bishop
University of California at Davis bishop@cs.ucdavis.edu in Proceedings
of the Twelfth IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

[9] Dianxiang Xu, Vivek Goel, and Kendall Nygard 2006 “An Aspect-

Oriented Approach to Security Requirements Analysis” Proceedings of
the 30th Annual International Computer Software and Applications
Conference (COMPSAC'06) 0-7695-2655-1/06.

[10] D. G. Firesmith, "Engineering Security Requirements", Journal of

Object Technology, Vol. 2, No. 1, January-February 2003.

[11] Elizabeth Van Ruitenbeek Karen Scarfon. The Common Misuse Scoring

System (CMSS): Metrics for Software Feature Misuse Vulnerabilities
(DRAFT) NIST Interagency Report 7517(Draft)

[12] J.D. Meier, Alex Mackman, Blaine Wastell, Prashant Bansode, Jason

Taylor, Rudolph Araujo Security Engineering Explained - Chapter 3 -
Security Design Guidelines -

[13] Khalid Sultan, Abdeslam En-Nouaary, Abdelwahab Hamou-Lhadj

Department of Electrical and Computer Engineering Concordia
University, Montreal, Canada “Catalog of Metrics for Assessing
Security

[14] Mano Paul. The Ten Best Practices for Secure Software Development ,

CSSLP, CISSP, AMBCI, MCAD, MCSD, Network+, ECSA
www.isc2.org 2010

[15] M. Howard. 2004. Building more secure software with improved
development process. IEEE Security & Privacy, 2(6):63–65

[16] Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. Nemesis:
Preventing Authentication & Access

[17] Muhammad Umair Ahmed Khan and Mohammed Zulkernine 2009.
“On Selecting Appropriate Development Processes and Requirements

IJSER

http://www.ijser.org/
mailto:nickolai@csail.mit.edu
mailto:NSA-Guidance@missi.ncsc.mil
mailto:josef.s.sherif@jpl.nasa.gov
mailto:bishop@cs.ucdavis.edu
http://www.isc2.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2328
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Engineering Methods for Secure Software” 0730-3157/09 $25.00 ©
2009 IEEE DOI 10.1109 /COMPSA

[18] Nancy R. Mead. , 2008. “SQUARE Process”
Software Engineering Institute [vita] Copyright © 2006, 2008 Carnegie
Mellon University2006-01-30; Updated 2008-09-17

[19] Per Håkon Meland and Jostein Jensen “Secure Software Design in
Practice” SINTEF Information and Communication Technology
Department of Security, Safety and System Development
{Per.H.Meland, Jostein.Jensen}@sintef.no The Third International
Conference on Availability, Reliability and Security

[20] S. B. Lipner. 2004. The trustwothy computing security development
lifecycle. In Procedeeings of the 20th Annual Computer Security
Applications Conference, pages 2–13, Tucson,AZ, USA.

[21] Scott A. Crosby Dan S. Wallach.“Denial of Service via Algorithmic
Complexity Attacks” scrosby@cs.rice.edu dwallach@cs.rice.edu
Department of Computer Science, Rice

IJSER

http://www.ijser.org/
https://buildsecurityin.us-cert.gov/bsi/about_us/authors/230-BSI.html
mailto:Jostein.Jensen%7d@sintef.no
mailto:dwallach@cs.rice.edu

	1.1 Personal Information HTTP clients are often privy to large amounts of personal information (e.g. the user's name, location, mail address, passwords, encryption keys, etc.), and SHOULD be very careful to prevent unintentional leakage of this inform...
	1.1.1 Abuse of Server Log Information
	1.1.2 Transfer of Sensitive Information
	1.1.3 Encoding Sensitive Information in URI's
	1.1.4 Privacy Issues Connected to Accept Headers
	1.2 Attacks Based On File and Path Names
	1.3 DNS Spoofing
	1.4 Location Headers and Spoofing
	1.5 Content-Disposition Issues
	1.6 Authentication Credentials and Idle Clients
	1.7 Proxies and Caching
	1.7.1 Denial of Service Attacks on Proxies
	Use Multiple Gatekeepers
	Restrict User Access to System Level Resources
	Consider Authorization Granularity
	[14] Mano Paul. The Ten Best Practices for Secure Software Development , CSSLP, CISSP, AMBCI, MCAD, MCSD, Network+, ECSA www.isc2.org 2010
	[15] M. Howard. 2004. Building more secure software with improved development process. IEEE Security & Privacy, 2(6):63–65
	[16] Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. Nemesis: Preventing Authentication & Access
	[17] Muhammad Umair Ahmed Khan and Mohammed Zulkernine 2009. “On Selecting Appropriate Development Processes and Requirements Engineering Methods for Secure Software” 0730-3157/09 $25.00 © 2009 IEEE DOI 10.1109 /COMPSA
	[18] Nancy R. Mead. , 2008. “SQUARE Process” Software Engineering Institute [vita] Copyright © 2006, 2008 Carnegie Mellon University2006-01-30; Updated 2008-09-17
	[19] Per Håkon Meland and Jostein Jensen “Secure Software Design in Practice” SINTEF Information and Communication Technology Department of Security, Safety and System Development {Per.H.Meland, Jostein.Jensen}@sintef.no The Third International Confer...
	[20] S. B. Lipner. 2004. The trustwothy computing security development lifecycle. In Procedeeings of the 20th Annual Computer Security Applications Conference, pages 2–13, Tucson,AZ, USA.
	[21] Scott A. Crosby Dan S. Wallach.“Denial of Service via Algorithmic Complexity Attacks” scrosby@cs.rice.edu dwallach@cs.rice.edu Department of Computer Science, Rice

